This is a learning note for the book: Multiple View Geometry in Computer Vision, Second Edition.

Projective Geometry and Transformations of 2D

Line and point

  • Definition (inhomogeneous $\Leftrightarrow$ homogeneous):
    $$ax+by+c=0 \Leftrightarrow \mathbf{x}^\top\mathbf{L}=0$$
    Degree of freedom (dof) = 2

  • Homogeneous form of Line:
    $$\mathbf{L}=k(a,b,c)^\top \in \mathbb{R}^3$$

  • Homogeneous form of point:
    $$\mathbf{x}=(x_1,x_2,x_3)^\top \in \mathbb{R}^3 \\
    \Rightarrow (\frac{x_1}{x_3},\frac{x_1}{x_3})\in\mathbb{R}^2 $$

  • Intersection of lines:
    $$\mathbf{x}=\mathbf{L}_1\times\mathbf{L}_2$$
    Because in vector computation (triple scalar product, think in 3D space):
    $$\mathbf{L}_1(\mathbf{L}_1\times\mathbf{L}_2)=\mathbf{L}_2(\mathbf{L}_1\times\mathbf{L}_2)\\
    \Rightarrow \mathbf{L}_1\mathbf{v}=\mathbf{L}_2\mathbf{v}\\
    \Rightarrow \mathbf{v}=\mathbf{x}$$

  • Line through two points:
    $$\mathbf{L}=\mathbf{x}_1\times\mathbf{x}_2$$
    Use the same trick above.

  • Ideal points (the point two parallel line intersect on):
    $$\mathbf{x}_{ideal}=(x_1,x_2,0)^\top\in\mathbb{R}^3$$

  • Line at infinity (The set of ideal points lies):
    $$\mathbf{L}_\infty=(0,0,1)^\top\in\mathbb{R}^3$$

  • Projective Plane:

    Points and lines of $\mathbb{P}^2$ are represented by rays and planes in $\mathbb{R}^3$ respectively. Ideal points are the vectors lying in $x_1x_2$-plane, and $\mathbf{L}_\infty$ is $x_1x_2$-plane.

  • Duality principle

    In 2D projective geometry, any theorem has dual theorem by interchanging lines and points.

Conics

  • Definition (inhomogeneous $\Leftrightarrow$ homogeneous):
    $$ax^2+bxy+cy^2+dx+ey+f=0 \\
    \Leftrightarrow ax_1^2+bx_1x_2+cx_2^2+dx_1x_3+ex_2x_3+fx_3^2=0 \\
    where, x\rightarrow \frac{x_1}{x_3},y\rightarrow \frac{x_2}{x_3}$$

    In matrix form:
    $$\mathbf{x}^\top C \mathbf{x}=0 \\
    where, C=\begin{bmatrix}
    a & \frac{b}{2} & \frac{d}{2} \\
    \frac{b}{2} & c & \frac{e}{2} \\
    \frac{d}{2} & \frac{e}{2} & f
    \end{bmatrix}$$

    Dof: 5 (The ratios $\{a:b:c:d:e:f\}$)

  • Tangent lines to conics:
    $$\mathbf{L}=C\mathbf{x}$$

  • Line conic definition:
    $$\mathbf{L}^\top C^* \mathbf{L}=0$$

    $$C^*=C^{-1}$$

Transformations

  • Projection transformation:
    $$\mathbf{x}'=H\mathbf{x}, \mathbf{x}\in\mathbb{R}^3$$
    , where $H$ is non-sigular matrix.

  • Transformation of lines:
    $$\mathbf{L}'=H^{-\top}\mathbf{L}$$

  • Transformation of conics:
    When $\mathbf{x}β€˜=H\mathbf{x}$,
    $$\mathbf{x}^\top C\mathbf{x}=[H^{-1}\mathbf{x}’]^\top C H^{-1}\mathbf{x}β€˜\\
    =\mathbf{x}’^\top [H^{-\top}CH^{-1}]\mathbf{x}β€˜\\
    =\mathbf{x}’^\top C’\mathbf{x}'$$
    and for line conics,
    $$C^{*\prime}=HC^*H^\top$$

  • Different transformations

    $$R = \begin{bmatrix}
    cos\theta & -sin\theta \\
    sin\theta & cos\theta
    \end{bmatrix}$$

  • The topology of the projective plane

    Think about $\mathbb{P}^2$ and unit sphere in $\mathbb{R}^3$, there is a two-to-one correspoindence between the unit sphere $S^2 \in \mathbb{R}^3$ and projective plane $\mathbb{P}^2$. In the language of topology, the sphere $S^2$ is a 2-sheeted covering space of $\mathbb{P}^2$.

Recovery of affine and metric properties from images

  • The line at infinity $\mathbf{L}_\infty$ is a fixed line the projective transformation $H$ if and only if $H$ is a afinity
  • We can compute vanishing point from parallel line:

  • Also we can compute from a length ratio (see p.51 for more detail):

  • The circular points $\mathbf{I}, \mathbf{J}$ are fixed points under the projective transformation $H$ if and only if $H$ is a similarity (proof: p.52)
    $$\mathbf{I}=(1, i, 0)^\top\\
    \mathbf{J}=(1, -i, 0)^\top$$

  • Classification of conics

Projective Geometry and Transformation of 3D

Points, Lines, and projective transformations

  • Points (homogeneous$\Leftrightarrow$inhomogeneous): $(X_1,X_2,X_3,X_4)^\top \Leftrightarrow (\frac{X_1}{X_4},\frac{X_2}{X_4},\frac{X_3}{X_4})^\top$

  • Planes (dof: 3):
    $$\pi_1X+\pi_2Y+\pi_3Z+\pi_4=0\\
    \Leftrightarrow \pi_1X_1+\pi_2X_2+\pi_3X_3+\pi_4X_4=0\\
    \Leftrightarrow \boldsymbol{\pi}^\top\mathbf{X}=0$$

  • In $\mathbb{P}^3$, points and planes are dual and lines are self-dual.

  • Three points define a plane:
    $$\begin{bmatrix}
    \mathbf{X}_1^\top \\
    \mathbf{X}_2^\top \\
    \mathbf{X}_3^\top
    \end{bmatrix} \boldsymbol{\pi} = \mathbf{0}$$

  • Three planes define a point:
    $$\begin{bmatrix}
    \boldsymbol{\pi}_1^\top \\
    \boldsymbol{\pi}_2^\top \\
    \boldsymbol{\pi}_3^\top
    \end{bmatrix} \mathbf{X} = \mathbf{0}$$

  • Projective transformation:
    $$\boldsymbol{\pi}'=H^{-\top}\boldsymbol{\pi}$$

  • Parametrized points on a plane:
    $$\mathbf{X}=M\mathbf{x}$$
    $M$ is $4\times3$ matrix to generate the rank 3 null-space of $\boldsymbol{\pi}$.

  • Lines (dof: 4):

    However, to represent a 4 dof would be a homogeneous 5-vector. So there are different representations. Following are three of them:

  • Def. 1: Null-space and span representation (dof: 6)
    $$W=\begin{bmatrix}
    \mathbf{A}^\top \\
    \mathbf{B}^\top
    \end{bmatrix}$$

    $\mathbf{A}$, $\mathbf{B}$ is two points in line.

  • Def. 2: Plucker matrices (dof: 4)

    Define by two points:
    $$\mathbf{L}=\mathbf{A}\mathbf{B}^\top-\mathbf{B}\mathbf{A}^T$$

    Define by two planes:
    $$\mathbf{L}^*=\mathbf{P}\mathbf{Q}^\top-\mathbf{Q}\mathbf{P}^T$$
    $\mathbf{L}^*$ is just the rewrite $\mathbf{L}$:
    $$l_{12}:l_{13}:l_{14}:l_{23}:l_{42}:l_{34}=l_{34}^*:l_{42}^*:l_{23}^*:l_{14}^*:l_{13}^*:l_{12}^*$$

    The plane defined by the join of the point $\mathbf{X}$ and Line $\mathbf{L}$ is:
    $$\boldsymbol{\pi}=\mathbf{L}^*\mathbf{X}$$
    except $\mathbf{X}$ on line $\mathbf{L}$: $\mathbf{L}^*\mathbf{X}=0$.

    The point defined by the intersection of the line $L$ and plane $\boldsymbol{\pi}$ is:
    $$\mathbf{X}=\mathbf{L}\boldsymbol{\pi}$$
    except $\boldsymbol{\pi}$ on line $\mathbf{L}$: $\mathbf{L}\boldsymbol{\pi}=0$.

  • Def. 3: Plucker line coordinates (dof: 4)
    Only six non-zero element of Plucker matrix:
    $$\mathcal{L}={l_{12},l_{13},l_{14},l_{23},l_{42},l_{34}}$$

  • Quadrics and dual quadrics (See p.73)

Estimation - 2D Projective Transformation

The Direct Linear Transformation (DLT) algorithm

  • Aim to find transformation $H$ given a set of four 2D to 2D point correspondences, $\mathbf{x}_i\leftrightarrow\mathbf{x}_i’$. This gives: $\mathbf{x}_i’=H\mathbf{x}_i$

    We can solve $H$ by the cross product: $\mathbf{x}_i’\times H\mathbf{x}_i=0$

    Let the $j$-th row of $H$ is denoted by $\mathbf{h}^{1\top}$:
    $$H\mathbf{x}_i=\begin{pmatrix}
    \mathbf{h}^{1\top}\mathbf{x}_i \\
    \mathbf{h}^{2\top}\mathbf{x}_i \\
    \mathbf{h}^{3\top}\mathbf{x}_i
    \end{pmatrix}$$

    Let $\mathbf{x}_i’=(x_i’, y_i’, z_i’)^\top$
    $$\mathbf{x}_i’\times H\mathbf{x}_i=\begin{pmatrix}
    y_i’\mathbf{h}^{3\top}\mathbf{x}_i-z_i’\mathbf{h}^{2\top}\mathbf{x}_i \\
    z_i’\mathbf{h}^{1\top}\mathbf{x}_i-x_i’\mathbf{h}^{3\top}\mathbf{x}_i \\
    x_i’\mathbf{h}^{2\top}\mathbf{x}_i-y_i’\mathbf{h}^{1\top}\mathbf{x}_i
    \end{pmatrix}$$

    , which could be reformed to:
    $$\begin{bmatrix}
    \mathbf{0}^\top & -z_i’\mathbf{x}_i^\top & y_i’\mathbf{x}_i^\top \\
    z_i’\mathbf{x}_i^\top & \mathbf{0}^\top & -x_i’\mathbf{x}_i^\top \\
    -y_i’\mathbf{x}_i^\top & x_i’\mathbf{x}_i^\top & \mathbf{0}^\top
    \end{bmatrix}
    \begin{pmatrix}
    \mathbf{h}^1 \\
    \mathbf{h}^2 \\
    \mathbf{h}^3
    \end{pmatrix}=\mathbf{0}\\
    \Leftrightarrow \mathbf{A}_i\mathbf{h}=\mathbf{0}$$

    , where $\mathbf{A}_i$ is a $3\times9$ matrix and $h$ is a 9D-vector made up of the entries of the of the entries of $H$.

    (i) The equation $\mathbf{A}_i\mathbf{h}=\mathbf{0}$ is an linear equation in the unknown $h$.

    (ii) $\mathbf{A_i}$ has three rows but only two of them are independent. The third row could be the sum of $x_i’$ times the first row and $y_i’$ times the second.

    (iii) We could directly choose $z_i’=1$ for measurement, but other choices are possible.

  • Solving for $H$

    Usually we will find multiple point correspondences more than 4. And this leads to over-determined solution. However, due to the measurement noise, the $A$ is not have rand 8. So the target is to minimize $\frac{\lVert\mathbf{A}\mathbf{h}\rVert}{\lVert\mathbf{h}\rVert}$. Which the basic DLT algorithm does:

    • Computational complexity of the SVD to decompose $m\times n$ matrix:

      To find U, D, V we need $4m^2n+8mn^2+9n^3$ floating-point operations(flops).

      To find only D, V, we need $4mn^2+8n^3$ flops.

    • Configuration to determine the homographic transformation:

      3 points & 1 line – OK

      3 lines & 1 point – OK

      2 lines & 2 points – NO

Different cost functions

  • Algebraic distance

    The DLT algorithm minimizes the norm$\lVert\mathbf{A}\mathbf{h}\rVert$, which is called algebraic distance $\epsilon_i$:
    $$d_{alg}(\mathbf{x}_i’,H\mathbf{x}_i)^2=\lVert\epsilon\rVert^2=\lVert\begin{bmatrix}
    \mathbf{0}^\top & -z_i’\mathbf{x}_i^\top & y_i’\mathbf{x}_i^\top \\
    z_i’\mathbf{x}_i^\top & \mathbf{0}^\top & -x_i’\mathbf{x}_i^\top
    \end{bmatrix}\mathbf{h}\rVert^2$$

    More generally, for two vecotrs $\mathbf{x}_1$ and $\mathbf{x}_2$, the algebraic distance is:

    $$d_{alg}(\mathbf{x}_1,\mathbf{x}_2)^2=a_1^2+a_2^2$$

    , where $\mathbf{a}=(a_1,a_2,a_3)^\top=\mathbf{x}_1\times \mathbf{x}_2$.

  • Geometric distance

    Notation: $\mathbf{x}$ represent the measured image coordinates; $\hat{\mathbf{x}}$ represent estimated values of the points and $\overline{\mathbf{x}}$ prepresent true values of the points.

    The measurement is accurate enough, and the only error is transfer error.

    Single image error: $\sum_i d(\mathbf{x}_i’, H\overline{\mathbf{x}}_i)^2$

    Symmetric transfer error: $\sum_i d(\mathbf{x}_i’, H\mathbf{x}_i)^2+d(\mathbf{x}_i,H^{-1}\mathbf{x}_i’)^2$

  • Reprojection error - both images

    $\sum_i d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2+d(\mathbf{x}_i’,\hat{\mathbf{x}}_i’)^2$ subject to $\hat{\mathbf{x}}_i’=\hat{H}\hat{\mathbf{x}}_i$

    • For affine transformation and below, the DLT algorithm is the same as geometric distance.
  • Sampson error (Skip, ref: p.98)

Statistical cost functions and Maximum Likelihood estimation

Skip. ref: 102

Transformation invariance and normalization

  • Non-invariance of the DLT algorithm

    Suppose we have correspondences $\mathbf{x}_i\leftrightarrow\mathbf{x}_i’$ in image, and we have another transformation $T$ (like origin change, coordinates direction change, etc.). The transformed correspondences will be $\tilde{\mathbf{x}}_i\leftrightarrow\tilde{\mathbf{x}}_i’$, where $\tilde{\mathbf{x}}_i = T\mathbf{x}_i$ and $\tilde{\mathbf{x}}_i’ = T’\mathbf{x}_i’$. Then let $\tilde{H}=T’HT^{-1}$, we will get:

    which means:

  • Invariance of geometric error

    $$d(\tilde{\mathbf{x}}_i’, \tilde{H}\tilde{\mathbf{x}})=d(T’\mathbf{x}β€˜, T’HT^{-1}T\mathbf{x})=d(T’\mathbf{x}β€˜, T’H\mathbf{x})=d(\mathbf{x}’,H\mathbf{x})$$

  • Normalizing transformations

Iterative minimization & Robust estimation (RANSAC)

skip (ref: 110)

Background note end.